▶ Topic Areas Year 10, 2015 - chosen higher 2 2016 → Year 11, 2016 - chosen higher 2 2016 | | Septen | nber | | | Octo | ober | | | Nov | ember | | | Decembe | er | |----------|------------|------------------|----------------|--------------------|------------------------------|---|---------|--------------------------------------|----------------------------|------------------------|----------------------|---------------------|--------------------|----------------------| | Wk 1 | Wk 2 | Wk 3 | Wk 4 | Wk 5 | Wk 6 | Wk 7 | Wk 8 | Wk 9 | Wk 10 | Wk 11 | Wk 12 | Wk 13 | Wk 14 | Wk 15 | | Measures | Congruence | and similarity | Volume | Further equ
gra | uations and
phs | Inequalities | Holiday | Algebraic
fractions | Simultaneou
s equations | Equation of a circle | | d inverse
ortion | Mock exam
revis | | | Decei | mber | | Jan | uary | | | Fe | bruary | | | | March | | | | Wk 16 | Wk 17 | Wk 18 | Wk 19 | Wk 20 | Wk 21 | Wk 22 | Wk 23 | Wk 24 | Wk 25 | Wk 26 | Wk 27 | Wk 28 | Wk 29 | Wk 30 | | Hol | liday | Growth and decay | Sine and c | osine rules | Gradients and rate of change | Pre-calculus and
area under a
curve | Holiday | Sketching
graphs | Numerical
methods | Transforming functions | Vec | ctors | Circle
theorems | Holiday | | | Α | pril | | | М | ay | | | | June | | | Ju | ly | | Wk 31 | Wk 32 | Wk 33 | Wk 34 | Wk 35 | Wk 36 | Wk 37 | Wk 38 | Wk 39 | Wk 40 | Wk 41 | Wk 42 | Wk 43 | Wk 44 | Wk 45 | | Holiday | | R | evision and Ju | ne Examinatior | ns | | Holiday | Revision and
June
Examinations | w/b 5/6
w/e 11/6 | w/b 12/6
w/e 18/6 | w/b 19/6
w/e 25/6 | w/b 26/6
w/e 2/7 | w/b 3/7
w/e 9/7 | w/b 10/7
w/e 16/7 | ### Basic number, factors and multiples | | Specification content | Specification notes | |-----|---|---| | N1 | Order positive and negative integers Use the symbols =, ≠, <, >, ≤, ≥ | including use on a number line know the conventions of an open circle on a number line for a strict inequality and a closed circle for an included boundary | | N2 | Apply the four operations, including formal written methods, to integers – both positive and negative Understand and use place value (e.g. when working with very large or very small numbers, and when calculating with decimals) | Including questions set in context Knowledge of terms used in
household finance, for example
profit, loss, cost price, selling price,
debit, credit and balance, income
tax, VAT and interest rate | | N3 | Recognise and use relationships between operations including
inverse operations (e.g. cancellation to simplify calculations and
expressions) | | | N14 | Estimate answers Check calculations using approximation and estimation, including
answers obtained using technology | including evaluation of results
obtained | | N4 | Use the concepts and vocabulary of prime numbers, factors
(divisors), multiples, common factors, common multiples, highest
common factor, lowest common multiple, prime factorisation,
including using product notation, and the unique factorisation
theorem | prime factor decomposition including product of prime factors written in index form | | N5 | Apply systematic listing strategies and the use of the product
rule for counting | including using lists, tables and diagrams | | | | | # Rounding | | Specification content | Specification notes | |-----|---|--| | N15 | Round numbers and measures to an appropriate degree of accuracy (e.g. to a specified number of decimal places or significant figures) Use inequality notation to specify simple error intervals due to truncation or rounding | including appropriate rounding for questions
set in context students should know not to round values
during intermediate steps of a calculation | | N16 | Apply and interpret limits of accuracy including upper and lower bounds | | NEW # Angles, scale diagrams and bearings | | Specification content | Specification notes | |-----|--|---| | G1 | Use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries Use the standard conventions for labelling and referring to the sides and angles of triangles Draw diagrams from written descriptions | | | G3 | Apply the properties of: angles at a point angles at a point on a straight line vertically opposite angles Understand and use alternate and corresponding angles on parallel lines | colloquial terms such as Z
angles are not acceptable
and should not be used | | R2 | Use scale factors, scale diagrams and maps | including geometrical
problems | | G15 | Measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings | including the eight compass
point bearings and three-
figure bearings | # Properties of polygons | | Specification content | Specification notes | |----|---|--| | G3 | Derive and use the sum of angles in a triangle (e.g. to deduce and
use the angle sum in any polygon, and to derive properties of
regular polygons) | | | G4 | Derive and apply the properties and definitions of: special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus and triangles and other plane figures using appropriate language | Including knowing names and properties of isosceles, equilateral, scalene, right-angled, acute-angled, obtuse-angled triangles including knowing names and using the polygons: pentagon, hexagon, octagon and decagon | ### Fractions and decimals | | Specification content | Specification notes | |-----|--|---| | N1 | Order positive and negative decimals and fractions | | | N2 | Apply the four operations, including formal written methods, to simple fractions (proper and improper) and mixed numbers - both positive and negative Apply the four operations, including formal written methods, to decimals - both positive and negative Understand and use place value (e.g. when calculating with decimals) | Including questions set in context Knowledge of terms used in household finance, for example profit, loss, cost price, selling price, debit, credit and balance, income tax, VAT, interest rate | | N8 | Calculate exactly with fractions | | | N10 | Work interchangeably with terminating decimals and their corresponding fractions (such as 3.5 and \(\frac{7}{2}\) or 0.375 and \(\frac{3}{8}\)) including ordering Change recurring decimals into their corresponding fractions and vice versa | including ordering | ### Basic algebra review | | Specification content | Specification notes | |----|---|--| | A1 | ab in place of a × b Use and interpret algebraic notation, including: 3y in place of y + y + y and 3 × y a² in place of a × a, a³ in place of a × a × a, a²b in place of a × a × b | it is expected that answers will be given in their
simplest form without an explicit instruction to do so | | N3 | a/b in place of α ÷ b coefficients written as fractions rather than as decimals brackets Use conventional notation for priority of operations, including | | | A3 | understand and use the concepts and vocabulary of expressions, equations, formulae, <u>identities</u> , inequalities, terms and factors | this will be implicitly and explicitly assessed | | A4 | Simplify and manipulate algebraic expressions (including those involving surds) by: collecting like terms multiplying a single term over a bracket taking out common factors | URDS COME LATER | ### Equations | | Specification content | Specification notes | |-----|---|---| | A2 | Substitute numerical values into formulae and expressions, including scientific formulae | unfamiliar formulae will be given in
the question | | A17 | Solve linear equations in one unknown algebraically <u>including those with the unknown on both sides of the equation</u> | including use of brackets | Algebraic fractions do come later but if you want to do here then please do # Collecting and representing data | | Specification content | Specification notes | |----|---|---| | S2 | Interpret and construct tables, charts and diagrams including, for categorical data: frequency tables bar charts pie charts pictograms vertical line charts for ungrouped discrete numerical data tables and line graphs for time series data know their appropriate use | including choosing suitable
statistical diagrams | | S4 | Interpret, analyse and compare distributions of data sets from univariate empirical
distributions through appropriate graphical representation involving discrete, continuous
and grouped data, including boxplots | know and understand the terms
primary data, secondary data,
discrete data and continuous data | | S3 | Construct and interpret diagrams for grouped discrete data and continuous
data, i.e. histograms with equal and unequal class intervals and cumulative
frequency graphs, and know their appropriate use | | ### Statistical measures | | Specification content | Specification notes | |----|--|--| | S4 | Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: appropriate measures of central tendency (median, mean, mode and modal class) spread (range, including consideration of outliers, quartiles and inter-quartile range) | students should know and understand the terms: primary data, secondary data, discrete data and continuous data | | S5 | Apply statistics to describe a population | | | S1 | Infer properties of populations or distributions from a sample,
whilst knowing the limitations of sampling | | ### Basic percentages | | Specification content | Specification notes | |-----|--|--| | R9 | Define percentage as 'number of parts per hundred' Interpret percentages and percentage changes as a fraction or decimal and interpret these multiplicatively Express one quantity as a percentage of another Compare two quantities using percentages Work with percentages greater than 100% | | | N12 | Interpret fractions and percentages as operators | including interpreting percentage problems
using a multiplier | ### Calculating with percentages | | Specification content | Specification notes | |----|---|--| | R9 | percentage increase / decrease problems | problems may be set in context using a multiplier | Compound interest on SOW later (with Growth and Decay) Makes sense to do here as well # Ratio and proportion | | Specification content | Specification notes | |-----|---|--| | N11 | Identify and work with fractions in ratio problems | | | R3 | Express one quantity as a fraction of another, where the fraction is less than 1 or greater
than 1 | | | R4 | Use ratio notation, including reduction to simplest form | | | R5 | Divide a given quantity into two parts in a given part:part or part:whole ratio Express the division of a quantity into two parts as a ratio Apply ratio to real contexts and problems (such as those involving conversion, comparison, scaling, mixing and concentrations) | including better value or best
buy problems | | R6 | Express a multiplicative relationship between two quantities as a ratio or fraction | | | R7 | Understand and use proportion as equality of ratios | | | R8 | Relate ratios to fractions and to linear functions | | #### Coordinates and linear graphs | | Specification content | Specification notes | |-----|---|---------------------| | A8 | Work with co-ordinates in all four quadrants | | | G11 | Solve geometrical problems on co-ordinate axes | | | A9 | Plot graphs of equations that correspond to straight line graphs in the co-ordinate plane Use the form y = mx+c to identify parallel lines and perpendicular lines Find the equation of the line through two given points, or through one point with a given gradient | | | A10 | Identify and interpret gradients and intercepts of linear functions graphically and algebraically | | #### Real life graphs #### Perimeter and area | | Specification content | Specification notes | |-----|---|---------------------| | G12 | Identify properties of the faces, surfaces, edges and vertices of: cubes, cuboids, prisms, cylinders, pyramids, cones
and spheres | | | G17 | Calculate the perimeter of a 2D shapes and composite shapes Find the surface area of pyramids composite shapes | | | G16 | Know and apply formulae to calculate area of: triangles parallelograms trapezia Pupils must know formulae | | #### Circumference and area | | Specification content | Specification notes | |-----|--|--| | G9 | Identify and apply circle definitions and properties, including: centre, radius, chord, diameter,
circumference, tangent, arc, sector and segment | | | G17 | Know and use the formulae: Circumference of a circle = 2πr = πd Area of a circle = πr² Calculate the perimeters of 2D shapes including circles and composite shapes Calculate areas of circles and composite shapes Calculate surface area of spheres, cones and composite solids | solutions in terms of π
may be asked for | | G18 | Calculate arc lengths, angles and areas of sectors of circles | | #### Indices | | Specification content | Specification notes | |----|---|---| | N6 | Use positive integer powers and associated real roots (square, cube and higher) Recognise powers of 2, 3, 4, 5 Estimate powers and roots of any given positive number | - including square numbers up to 15 x 15
- know that $1000=10^3$ and 1 million $=10^6$ | | N7 | Calculate with roots, and with integer and fractional indices | | #### Surds | | Specification content | Specification notes | |------|--|---------------------| | N8 | Calculate exactly with surds Simplify surd expressions involving squares (eg √12 = √4 × 3 = √4 × √3 = 2√3) and rationalise denominators | | | A24 | Recognise and use simple geometric progressions (rⁿ where n is an integer and r is a surd) | | | Star | adard form | | #### Standard form | | Specification content | Specification notes | |----|--|---| | N2 | Understand and use place value (e.g. when working with very large or very small
numbers) | including questions set in
context | | N9 | - Calculate with and interpret standard form ${}^{A} imes 10^{n}$ where $$ and $$ n is an integer | with and without a calculator interpret calculator displays | #### Transformations | | Specification content | Specification notes | |-----|---|---| | G7 | Identify, describe and construct congruent and similar shapes, including on co-ordinate axes, by
considering rotation, reflection, translation and enlargement (<u>including fractional</u> and negative <u>scale</u>
<u>factors</u>) | | | G24 | Describe translations as 2D vectors | | | G8 | Describe the changes and invariance achieved by combinations of rotations, reflections
and translations | including using column
vector notation for
translations | #### Basic probability # Probability | | Specification content | Specification notes | |----|--|---| | P2 | Apply ideas of randomness, fairness and equally likely events to calculate expected
outcomes or multiple future experiments | | | P3 | Relate relative expected frequencies to theoretical probability, using appropriate language
and the 0 – 1 probability scale | | | P5 | Understand that empirical unbiased samples tend towards theoretical probability
distributions with increasing sample size | | | P6 | Enumerate sets and combinations of sets systematically, using tables, grids, Venn diagrams and tree diagrams | | | P8 | <u>Calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions</u> | know when to add and when to
multiply two or more
probabilities | | P9 | Calculate and interpret conditional probabilities through representation using
expected frequencies with two-way tables, tree diagrams and Venn diagrams | | NEW ### Algebra: quadratics, rearranging formulae and identities | | Specification content | Specification notes | |----|--|---| | A4 | Simplify and manipulate algebraic expressions (including those involving surds) by: expanding products of two or more binomials factorising quadratic expressions of the form including the difference of two squares factorising quadratic expressions of the form x² + bx + c simplifying expressions involving sums, products and powers, including the laws of indices | | | A5 | Understand and use standard mathematical formulae Rearrange formulae to change the subject | including use of formulae from other
subjects in words and using symbols | | A6 | Know the difference between an equation and an identity Argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs | NEW | | А7 | Where appropriate, interpret simple expressions as functions with inputs and outputs Interpret the reverse process as the 'inverse function' Interpret the succession of two functions as a 'composite function' | • understand and use function notation: $f(x)$, $fg(x)$, $f^{-1}(x)$ is expected at higher tier | ### Pythagoras theorem and basic trigonometry | | Specification content | Specification | |-----|--|---------------| | | | notes | | G20 | Know the formula for Pvthagoras' Theorem a² + b² = c² Apply it to find angles and lengths in right angled triangles and, where possible, general triangles in two and three dimensional figures Know and use the trigonometric ratios sin θ = opposite / hypotenuse , cos θ = adjacent / hypotenuse and tan θ = opposite / adjacent | | | G21 | • Know the exact values of sin θ and cos θ = 0°, 30° 45°, 60° and 90° | | | | • Know the exact value of $\tan \theta \text{ for } \theta = \underline{0^{\circ}, 30^{\circ}, 45^{\circ} \text{ and } 60^{\circ}}$ | | | G6 | Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides including Pythagoras' Theorem and use known results to obtain simple proofs | | | R12 | Compare lengths using ratio notation; make links to trigonometric ratios |
 | Congruence and similarity appear later #### Sequences | | Specification content | Specification notes | |-----|---|--| | A23 | Generate terms of a sequence from either a term-to-term or a position-to-
term rule | including from patterns and diagrams | | A24 | Recognise and use: sequences of triangular, square and cube numbers simple arithmetic progression Fibonacci type sequences quadratic sequences and simple qeometric progressions (rⁿ where n is an integer and ris a rational number > 0) other sequences | other recursive sequences will be defined in the question NEW | | A25 | Deduce expressions to calculate the nth term of linear and quadratic sequences | | #### Scatter graphs # 2D representations of 3D shapes | | | Specification content | Specification notes | |----|----|---|---------------------| | G1 | .3 | Construct and interpret plans and elevations of 3D shapes | | ### Constructions and loci | | Specification content | Specification notes | |----|--|--| | G2 | Use the standard ruler and compass constructions: perpendicular bisector of a line segment constructing a perpendicular to a given line from / at a given point bisecting a given angle Know that the perpendicular distance from a point to a line is the shortest distance to the line Use these to construct given figures and solve loci problems | including constructing an angle of
60° | ### Measures | | Specification content | Specification notes | |-----|---|---| | N16 | Apply and interpret limits of accuracy including upper and lower
bounds | | | G14 | Use standard units of measure and related concepts (length, area,
volume / capacity, mass, time, money etc) | | | N13 | Use standard units of mass, length, time, money and other measures
(including standard compound measures) using decimal quantities
where appropriate | know and use metric conversion factors for
length, area, volume and capacity. Imperial /
metric conversions will be given in the
question | | R1 | Change freely between related standard units (e.g. time, length, area,
volume / capacity, mass) and compound units (e.g. speed, rates of pay,
prices, <u>density</u>, <u>pressure</u>) in numerical <u>and algebraic contexts</u> | | | R11 | Use compound units such as speed, rates of pay, unit pricing, density and pressure | including making comparisons | **SOME NEW** ### Congruence and similarity | | Specification content | Specification notes | |-----|---|---------------------| | G5 | Use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS) | | | G6 | Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results
about angles and sides including the base angles of an isosceles triangle are equal, and use known results to obtain
simple proofs | | | G19 | Apply and use the concepts of congruence and similarity, including the relationships between lengths, areas and volumes in similar figures | | ### Volume | | Specification content | Specification notes | |-----|--|----------------------| | R12 | Compare lengths, areas and volumes using ratio notation Scale factors Make links to similarity | | | G16 | Know and apply the formulae to calculate the volume of cuboids and other right prisms (including
cylinders) | | | G17 | Calculate the volume of spheres, pyramids, cones and composite solids | • including frustums | | N8 | • Calculate exactly with multiples of π | | ### Further equations and graphs | | Specification content | Specification notes | |-----|--|--| | A17 | Solve linear equations in one unknown algebraically <u>including those with the unknown on both sides of the equation</u> Find approximate solutions using a graph | • including use of brackets learn the formula | | A18 | Solve quadratic equations (including those that require rearrangement) algebraically by factorising, by completing the square and by using the quadratic formula Find approximate solutions using a graph | SOME NEW | | A12 | Recognise, sketch and interpret graphs of linear and quadratic functions | | | A11 | Identify and interpret roots, intercepts and turning points of quadratic functions graphically; deduce roots algebraically and turning points by completing the square | including the symmetrical
property of a quadratic | | A21 | Translate simple situations or procedures into algebraic expressions or formulae derive an equation, solve the equation and interpret the solution | including solution of geometrical
problems and problems set in
context | ### Inequalities # SOME NEW | | Specification content | Specification notes | |-----|--|--| | A22 | Solve linear inequalities in one or two variables
and quadratic inequalities in one variable | know the conventions of an open circle on a number line for a strict
inequality and a closed circle for an included boundary | | | Represent the solution set on a number line,
using set notation and on a graph | in graphical work the convention of a dashed line for strict
inequalities and a solid line for an included inequality will be required | ### Algebraic fractions | | Specification content | Specification notes | |----|---|---------------------| | Α4 | Simplify and manipulate algebraic expressions involving algebraic fractions | | ### Simultaneous equations | | Specification content | Specification notes | |-----|---|--| | A19 | Solve two simultaneous equations in two variables (linear / linear or linear/quadratic) algebraically Find approximate solutions using a graph | | | A21 | Translate simple situations or procedures into algebraic expressions or formulae Derive two simultaneous equations Solve the equations and interpret the solution | including the solution of geometrical problems and problems set in context | ### Equation of a circle | | Specification content | Specification notes | |-----|--|---------------------| | A16 | Recognise and use the equation of a circle with centre at the origin Find the equation of a tangent to a circle at a given point. | | ### Direct and inverse proportion ### Sine and cosine rules | | Specification content | Specification notes | |-----|--|---------------------| | G22 | • Know and apply the Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ | | | | and Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$ to find unknown lengths and angles Must learn these formula | lae | | G23 | • Know and apply $=\frac{1}{2}abs\sin C$ to calculate the area, sides or angles of any triangle | | ### Gradients and rate of change | | Specification content | Specification notes | |-----|---|---------------------| | R15 | Interpret the gradient at a point on a curve as the instantaneous rate of change Apply the concepts of average and instantaneous rates of change (gradients of chords and tangents) in numerical, algebraic and graphical contexts | | | R14 | Interpret the gradient of a straight-line graph as a rate of change | | #### Pre-calculus and area under a curve | | Specification content | Specification notes | |-----|--|---------------------| | A15 | Calculate or estimate gradients of graphs and areas under graphs (including quadratic and other non-linear graphs) Interpret the results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts | | ### Sketching graphs ### NEW | | Specification content | Specification notes | |-----|--|---------------------| | A12 | • Recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic $y = \frac{1}{x}$ functions and the reciprocal function $y = kx$ for positive values of k , and the trigonometric functions (with arguments in degrees) $y = \sin x, y = \cos x$ and $y = \tan x$ for angles of any size | | ### Numerical methods ### NEW | | Specification content | Specification notes | |-----|---|---| | A20 | Find approximate solutions to equations numerically using iteration | including the use of suffix notation in recursive
formulae | ## Transforming functions | | Specification content | Specification notes | |-----|---|---------------------| | A13 | Sketch translations and reflections of a given function | | ### Vectors | | Specification content | Specification notes | |-----|--|---------------------| | G25 | Apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representation of vectors Use vectors to construct geometric arguments and proofs | | ### Circle theorems | | Specification content | Specification notes | |-----|--|--| | G10 | Apply and prove the standard circle theorems concerning angles, radii, tangents and chords and use them to prove related results | including angle at centre is equal to twice angle at circumference; angle in a semi-circle is 90°; angles in the same segment are equal; opposite angles in a cyclic quadrilateral sum to 180°; tangent at any point on a circle is perpendicular to the radius at that point tangents from an external point are equal in length; the perpendicular from the centre to a chord bisects the chord; alternate segment theorem |